Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.).

Identifieur interne : 003245 ( Main/Exploration ); précédent : 003244; suivant : 003246

Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.).

Auteurs : Pablo F. Cavagnaro [États-Unis] ; Douglas A. Senalik ; Luming Yang ; Philipp W. Simon ; Timothy T. Harkins ; Chinnappa D. Kodira ; Sanwen Huang ; Yiqun Weng

Source :

RBID : pubmed:20950470

Descripteurs français

English descriptors

Abstract

BACKGROUND

Cucumber, Cucumis sativus L. is an important vegetable crop worldwide. Until very recently, cucumber genetic and genomic resources, especially molecular markers, have been very limited, impeding progress of cucumber breeding efforts. Microsatellites are short tandemly repeated DNA sequences, which are frequently favored as genetic markers due to their high level of polymorphism and codominant inheritance. Data from previously characterized genomes has shown that these repeats vary in frequency, motif sequence, and genomic location across taxa. During the last year, the genomes of two cucumber genotypes were sequenced including the Chinese fresh market type inbred line '9930' and the North American pickling type inbred line 'Gy14'. These sequences provide a powerful tool for developing markers in a large scale. In this study, we surveyed and characterized the distribution and frequency of perfect microsatellites in 203 Mbp assembled Gy14 DNA sequences, representing 55% of its nuclear genome, and in cucumber EST sequences. Similar analyses were performed in genomic and EST data from seven other plant species, and the results were compared with those of cucumber.

RESULTS

A total of 112,073 perfect repeats were detected in the Gy14 cucumber genome sequence, accounting for 0.9% of the assembled Gy14 genome, with an overall density of 551.9 SSRs/Mbp. While tetranucleotides were the most frequent microsatellites in genomic DNA sequence, dinucleotide repeats, which had more repeat units than any other SSR type, had the highest cumulative sequence length. Coding regions (ESTs) of the cucumber genome had fewer microsatellites compared to its genomic sequence, with trinucleotides predominating in EST sequences. AAG was the most frequent repeat in cucumber ESTs. Overall, AT-rich motifs prevailed in both genomic and EST data. Compared to the other species examined, cucumber genomic sequence had the highest density of SSRs (although comparable to the density of poplar, grapevine and rice), and was richest in AT dinucleotides. Using an electronic PCR strategy, we investigated the polymorphism between 9930 and Gy14 at 1,006 SSR loci, and found unexpectedly high degree of polymorphism (48.3%) between the two genotypes. The level of polymorphism seems to be positively associated with the number of repeat units in the microsatellite. The in silico PCR results were validated empirically in 660 of the 1,006 SSR loci. In addition, primer sequences for more than 83,000 newly-discovered cucumber microsatellites, and their exact positions in the Gy14 genome assembly were made publicly available.

CONCLUSIONS

The cucumber genome is rich in microsatellites; AT and AAG are the most abundant repeat motifs in genomic and EST sequences of cucumber, respectively. Considering all the species investigated, some commonalities were noted, especially within the monocot and dicot groups, although the distribution of motifs and the frequency of certain repeats were characteristic of the species examined. The large number of SSR markers developed from this study should be a significant contribution to the cucurbit research community.


DOI: 10.1186/1471-2164-11-569
PubMed: 20950470
PubMed Central: PMC3091718


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.).</title>
<author>
<name sortKey="Cavagnaro, Pablo F" sort="Cavagnaro, Pablo F" uniqKey="Cavagnaro P" first="Pablo F" last="Cavagnaro">Pablo F. Cavagnaro</name>
<affiliation wicri:level="2">
<nlm:affiliation>Horticulture Department, University of Wisconsin, Madison, WI 53706, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Horticulture Department, University of Wisconsin, Madison, WI 53706</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Senalik, Douglas A" sort="Senalik, Douglas A" uniqKey="Senalik D" first="Douglas A" last="Senalik">Douglas A. Senalik</name>
</author>
<author>
<name sortKey="Yang, Luming" sort="Yang, Luming" uniqKey="Yang L" first="Luming" last="Yang">Luming Yang</name>
</author>
<author>
<name sortKey="Simon, Philipp W" sort="Simon, Philipp W" uniqKey="Simon P" first="Philipp W" last="Simon">Philipp W. Simon</name>
</author>
<author>
<name sortKey="Harkins, Timothy T" sort="Harkins, Timothy T" uniqKey="Harkins T" first="Timothy T" last="Harkins">Timothy T. Harkins</name>
</author>
<author>
<name sortKey="Kodira, Chinnappa D" sort="Kodira, Chinnappa D" uniqKey="Kodira C" first="Chinnappa D" last="Kodira">Chinnappa D. Kodira</name>
</author>
<author>
<name sortKey="Huang, Sanwen" sort="Huang, Sanwen" uniqKey="Huang S" first="Sanwen" last="Huang">Sanwen Huang</name>
</author>
<author>
<name sortKey="Weng, Yiqun" sort="Weng, Yiqun" uniqKey="Weng Y" first="Yiqun" last="Weng">Yiqun Weng</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20950470</idno>
<idno type="pmid">20950470</idno>
<idno type="doi">10.1186/1471-2164-11-569</idno>
<idno type="pmc">PMC3091718</idno>
<idno type="wicri:Area/Main/Corpus">003038</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003038</idno>
<idno type="wicri:Area/Main/Curation">003038</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003038</idno>
<idno type="wicri:Area/Main/Exploration">003038</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.).</title>
<author>
<name sortKey="Cavagnaro, Pablo F" sort="Cavagnaro, Pablo F" uniqKey="Cavagnaro P" first="Pablo F" last="Cavagnaro">Pablo F. Cavagnaro</name>
<affiliation wicri:level="2">
<nlm:affiliation>Horticulture Department, University of Wisconsin, Madison, WI 53706, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Horticulture Department, University of Wisconsin, Madison, WI 53706</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Senalik, Douglas A" sort="Senalik, Douglas A" uniqKey="Senalik D" first="Douglas A" last="Senalik">Douglas A. Senalik</name>
</author>
<author>
<name sortKey="Yang, Luming" sort="Yang, Luming" uniqKey="Yang L" first="Luming" last="Yang">Luming Yang</name>
</author>
<author>
<name sortKey="Simon, Philipp W" sort="Simon, Philipp W" uniqKey="Simon P" first="Philipp W" last="Simon">Philipp W. Simon</name>
</author>
<author>
<name sortKey="Harkins, Timothy T" sort="Harkins, Timothy T" uniqKey="Harkins T" first="Timothy T" last="Harkins">Timothy T. Harkins</name>
</author>
<author>
<name sortKey="Kodira, Chinnappa D" sort="Kodira, Chinnappa D" uniqKey="Kodira C" first="Chinnappa D" last="Kodira">Chinnappa D. Kodira</name>
</author>
<author>
<name sortKey="Huang, Sanwen" sort="Huang, Sanwen" uniqKey="Huang S" first="Sanwen" last="Huang">Sanwen Huang</name>
</author>
<author>
<name sortKey="Weng, Yiqun" sort="Weng, Yiqun" uniqKey="Weng Y" first="Yiqun" last="Weng">Yiqun Weng</name>
</author>
</analytic>
<series>
<title level="j">BMC genomics</title>
<idno type="eISSN">1471-2164</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Base Sequence (MeSH)</term>
<term>Computational Biology (MeSH)</term>
<term>Cucumis sativus (genetics)</term>
<term>DNA Primers (metabolism)</term>
<term>Databases, Nucleic Acid (MeSH)</term>
<term>Expressed Sequence Tags (MeSH)</term>
<term>Genetic Markers (MeSH)</term>
<term>Genome, Plant (genetics)</term>
<term>Genotype (MeSH)</term>
<term>Inbreeding (MeSH)</term>
<term>Microsatellite Repeats (genetics)</term>
<term>Minisatellite Repeats (genetics)</term>
<term>Polymerase Chain Reaction (MeSH)</term>
<term>Polymorphism, Genetic (MeSH)</term>
<term>RNA, Messenger (genetics)</term>
<term>RNA, Messenger (metabolism)</term>
<term>Reproducibility of Results (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN messager (génétique)</term>
<term>ARN messager (métabolisme)</term>
<term>Amorces ADN (métabolisme)</term>
<term>Bases de données d'acides nucléiques (MeSH)</term>
<term>Biologie informatique (MeSH)</term>
<term>Croisement consanguin (MeSH)</term>
<term>Cucumis sativus (génétique)</term>
<term>Génome végétal (génétique)</term>
<term>Génotype (MeSH)</term>
<term>Marqueurs génétiques (MeSH)</term>
<term>Polymorphisme génétique (MeSH)</term>
<term>Reproductibilité des résultats (MeSH)</term>
<term>Réaction de polymérisation en chaîne (MeSH)</term>
<term>Répétitions microsatellites (génétique)</term>
<term>Répétitions minisatellites (génétique)</term>
<term>Séquence nucléotidique (MeSH)</term>
<term>Étiquettes de séquences exprimées (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>RNA, Messenger</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>DNA Primers</term>
<term>RNA, Messenger</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Cucumis sativus</term>
<term>Genome, Plant</term>
<term>Microsatellite Repeats</term>
<term>Minisatellite Repeats</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN messager</term>
<term>Cucumis sativus</term>
<term>Génome végétal</term>
<term>Répétitions microsatellites</term>
<term>Répétitions minisatellites</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ARN messager</term>
<term>Amorces ADN</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Sequence</term>
<term>Computational Biology</term>
<term>Databases, Nucleic Acid</term>
<term>Expressed Sequence Tags</term>
<term>Genetic Markers</term>
<term>Genotype</term>
<term>Inbreeding</term>
<term>Polymerase Chain Reaction</term>
<term>Polymorphism, Genetic</term>
<term>Reproducibility of Results</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Bases de données d'acides nucléiques</term>
<term>Biologie informatique</term>
<term>Croisement consanguin</term>
<term>Génotype</term>
<term>Marqueurs génétiques</term>
<term>Polymorphisme génétique</term>
<term>Reproductibilité des résultats</term>
<term>Réaction de polymérisation en chaîne</term>
<term>Séquence nucléotidique</term>
<term>Étiquettes de séquences exprimées</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Cucumber, Cucumis sativus L. is an important vegetable crop worldwide. Until very recently, cucumber genetic and genomic resources, especially molecular markers, have been very limited, impeding progress of cucumber breeding efforts. Microsatellites are short tandemly repeated DNA sequences, which are frequently favored as genetic markers due to their high level of polymorphism and codominant inheritance. Data from previously characterized genomes has shown that these repeats vary in frequency, motif sequence, and genomic location across taxa. During the last year, the genomes of two cucumber genotypes were sequenced including the Chinese fresh market type inbred line '9930' and the North American pickling type inbred line 'Gy14'. These sequences provide a powerful tool for developing markers in a large scale. In this study, we surveyed and characterized the distribution and frequency of perfect microsatellites in 203 Mbp assembled Gy14 DNA sequences, representing 55% of its nuclear genome, and in cucumber EST sequences. Similar analyses were performed in genomic and EST data from seven other plant species, and the results were compared with those of cucumber.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>A total of 112,073 perfect repeats were detected in the Gy14 cucumber genome sequence, accounting for 0.9% of the assembled Gy14 genome, with an overall density of 551.9 SSRs/Mbp. While tetranucleotides were the most frequent microsatellites in genomic DNA sequence, dinucleotide repeats, which had more repeat units than any other SSR type, had the highest cumulative sequence length. Coding regions (ESTs) of the cucumber genome had fewer microsatellites compared to its genomic sequence, with trinucleotides predominating in EST sequences. AAG was the most frequent repeat in cucumber ESTs. Overall, AT-rich motifs prevailed in both genomic and EST data. Compared to the other species examined, cucumber genomic sequence had the highest density of SSRs (although comparable to the density of poplar, grapevine and rice), and was richest in AT dinucleotides. Using an electronic PCR strategy, we investigated the polymorphism between 9930 and Gy14 at 1,006 SSR loci, and found unexpectedly high degree of polymorphism (48.3%) between the two genotypes. The level of polymorphism seems to be positively associated with the number of repeat units in the microsatellite. The in silico PCR results were validated empirically in 660 of the 1,006 SSR loci. In addition, primer sequences for more than 83,000 newly-discovered cucumber microsatellites, and their exact positions in the Gy14 genome assembly were made publicly available.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>The cucumber genome is rich in microsatellites; AT and AAG are the most abundant repeat motifs in genomic and EST sequences of cucumber, respectively. Considering all the species investigated, some commonalities were noted, especially within the monocot and dicot groups, although the distribution of motifs and the frequency of certain repeats were characteristic of the species examined. The large number of SSR markers developed from this study should be a significant contribution to the cucurbit research community.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20950470</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>12</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2164</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>11</Volume>
<PubDate>
<Year>2010</Year>
<Month>Oct</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>BMC genomics</Title>
<ISOAbbreviation>BMC Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.).</ArticleTitle>
<Pagination>
<MedlinePgn>569</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2164-11-569</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Cucumber, Cucumis sativus L. is an important vegetable crop worldwide. Until very recently, cucumber genetic and genomic resources, especially molecular markers, have been very limited, impeding progress of cucumber breeding efforts. Microsatellites are short tandemly repeated DNA sequences, which are frequently favored as genetic markers due to their high level of polymorphism and codominant inheritance. Data from previously characterized genomes has shown that these repeats vary in frequency, motif sequence, and genomic location across taxa. During the last year, the genomes of two cucumber genotypes were sequenced including the Chinese fresh market type inbred line '9930' and the North American pickling type inbred line 'Gy14'. These sequences provide a powerful tool for developing markers in a large scale. In this study, we surveyed and characterized the distribution and frequency of perfect microsatellites in 203 Mbp assembled Gy14 DNA sequences, representing 55% of its nuclear genome, and in cucumber EST sequences. Similar analyses were performed in genomic and EST data from seven other plant species, and the results were compared with those of cucumber.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">A total of 112,073 perfect repeats were detected in the Gy14 cucumber genome sequence, accounting for 0.9% of the assembled Gy14 genome, with an overall density of 551.9 SSRs/Mbp. While tetranucleotides were the most frequent microsatellites in genomic DNA sequence, dinucleotide repeats, which had more repeat units than any other SSR type, had the highest cumulative sequence length. Coding regions (ESTs) of the cucumber genome had fewer microsatellites compared to its genomic sequence, with trinucleotides predominating in EST sequences. AAG was the most frequent repeat in cucumber ESTs. Overall, AT-rich motifs prevailed in both genomic and EST data. Compared to the other species examined, cucumber genomic sequence had the highest density of SSRs (although comparable to the density of poplar, grapevine and rice), and was richest in AT dinucleotides. Using an electronic PCR strategy, we investigated the polymorphism between 9930 and Gy14 at 1,006 SSR loci, and found unexpectedly high degree of polymorphism (48.3%) between the two genotypes. The level of polymorphism seems to be positively associated with the number of repeat units in the microsatellite. The in silico PCR results were validated empirically in 660 of the 1,006 SSR loci. In addition, primer sequences for more than 83,000 newly-discovered cucumber microsatellites, and their exact positions in the Gy14 genome assembly were made publicly available.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">The cucumber genome is rich in microsatellites; AT and AAG are the most abundant repeat motifs in genomic and EST sequences of cucumber, respectively. Considering all the species investigated, some commonalities were noted, especially within the monocot and dicot groups, although the distribution of motifs and the frequency of certain repeats were characteristic of the species examined. The large number of SSR markers developed from this study should be a significant contribution to the cucurbit research community.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Cavagnaro</LastName>
<ForeName>Pablo F</ForeName>
<Initials>PF</Initials>
<AffiliationInfo>
<Affiliation>Horticulture Department, University of Wisconsin, Madison, WI 53706, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Senalik</LastName>
<ForeName>Douglas A</ForeName>
<Initials>DA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Luming</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Simon</LastName>
<ForeName>Philipp W</ForeName>
<Initials>PW</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Harkins</LastName>
<ForeName>Timothy T</ForeName>
<Initials>TT</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kodira</LastName>
<ForeName>Chinnappa D</ForeName>
<Initials>CD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Huang</LastName>
<ForeName>Sanwen</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Weng</LastName>
<ForeName>Yiqun</ForeName>
<Initials>Y</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>10</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Genomics</MedlineTA>
<NlmUniqueID>100965258</NlmUniqueID>
<ISSNLinking>1471-2164</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017931">DNA Primers</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005819">Genetic Markers</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019295" MajorTopicYN="N">Computational Biology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018553" MajorTopicYN="N">Cucumis sativus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017931" MajorTopicYN="N">DNA Primers</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030561" MajorTopicYN="N">Databases, Nucleic Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020224" MajorTopicYN="N">Expressed Sequence Tags</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005819" MajorTopicYN="N">Genetic Markers</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="N">Genome, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="N">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007178" MajorTopicYN="N">Inbreeding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018895" MajorTopicYN="N">Microsatellite Repeats</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018598" MajorTopicYN="N">Minisatellite Repeats</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016133" MajorTopicYN="N">Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011110" MajorTopicYN="N">Polymorphism, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015203" MajorTopicYN="N">Reproducibility of Results</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2010</Year>
<Month>07</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2010</Year>
<Month>10</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>10</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>10</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>12</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20950470</ArticleId>
<ArticleId IdType="pii">1471-2164-11-569</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2164-11-569</ArticleId>
<ArticleId IdType="pmc">PMC3091718</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 1992 Jan 25;20(2):211-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1741246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2009 Apr;12(2):107-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19157957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mutat Res. 1997 Jan 31;383(1):61-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9042420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10774-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9724780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2003;4(2):R13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12620123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2007;8:125</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17442102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Mar 10;106(10):3853-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19223592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2009 Aug;182(4):1381-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19474195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2002 Dec;11(12):2453-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12453231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1995 Jul;12(4):594-603</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7659015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2007;7:58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17425784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Insect Mol Biol. 2007 Oct;16(5):613-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17714463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1980 Oct 10;8(19):4321-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7433111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Funct Integr Genomics. 2008 May;8(2):135-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17985162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2006 Apr;172(4):2541-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16489220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2001 Aug;11(8):1441-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11483586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2000 Apr;24(4):400-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10742106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1997 Aug;14(8):854-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9254923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome. 2001 Feb;44(1):111-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11269344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1997 Aug;146(4):1441-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9258686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 1995 Dec;11(4):360-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7493011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome. 2000 Dec;43(6):1003-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11195331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1989 Aug 25;17(16):6463-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2780284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2000 Oct;156(2):847-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11014830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2009 Dec;41(12):1275-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19881527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010;11:384</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20565788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 1996 May;92(7):865-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24166552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1997 Jul;146(3):769-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9215886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 1997 Feb;13(2):74-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9055609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Aug 11;436(7052):793-800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16100779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 1994 Feb;6(2):152-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8162069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Apr 24;422(6934):909-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12712207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1993 Jan;3(1):175-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8401603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009;4(6):e5795</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19495411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2000;132:365-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10547847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2004 Oct;109(6):1105-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15490101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2005 Jan;95(1):219-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15596469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2000 Jan;10(1):62-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10645951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1998 Oct;15(10):1269-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9787433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 1989 Jul;78(1):119-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24227040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 1994 Sep;89(1):42-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24177767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2000 Jul;10(7):967-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10899146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1995 May;12(3):432-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7739385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Funct Integr Genomics. 2005 Apr;5(2):80-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15650880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2002 Feb;30(2):194-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11799393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2005 Feb;110(3):462-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15592809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Sep 1;106(35):14937-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19706458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2001 Jan 1;29(1):159-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11125077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1997 Jul;146(3):1071-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9215909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biotechnol. 2005 Jan;23(1):48-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15629858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Jun;34(6):813-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12795701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2003 Feb;106(3):411-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12589540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 1997 May;16(1):84-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9140400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics. 1990 Aug;7(4):524-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1974878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Res. 2002 Dec 31;9(6):199-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12597276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1999 Jul;152(3):1057-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10388824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Aug 10;107(32):14269-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20656934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioessays. 1994 Apr;16(4):277-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8031305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Sep 27;449(7161):463-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17721507</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Wisconsin</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Harkins, Timothy T" sort="Harkins, Timothy T" uniqKey="Harkins T" first="Timothy T" last="Harkins">Timothy T. Harkins</name>
<name sortKey="Huang, Sanwen" sort="Huang, Sanwen" uniqKey="Huang S" first="Sanwen" last="Huang">Sanwen Huang</name>
<name sortKey="Kodira, Chinnappa D" sort="Kodira, Chinnappa D" uniqKey="Kodira C" first="Chinnappa D" last="Kodira">Chinnappa D. Kodira</name>
<name sortKey="Senalik, Douglas A" sort="Senalik, Douglas A" uniqKey="Senalik D" first="Douglas A" last="Senalik">Douglas A. Senalik</name>
<name sortKey="Simon, Philipp W" sort="Simon, Philipp W" uniqKey="Simon P" first="Philipp W" last="Simon">Philipp W. Simon</name>
<name sortKey="Weng, Yiqun" sort="Weng, Yiqun" uniqKey="Weng Y" first="Yiqun" last="Weng">Yiqun Weng</name>
<name sortKey="Yang, Luming" sort="Yang, Luming" uniqKey="Yang L" first="Luming" last="Yang">Luming Yang</name>
</noCountry>
<country name="États-Unis">
<region name="Wisconsin">
<name sortKey="Cavagnaro, Pablo F" sort="Cavagnaro, Pablo F" uniqKey="Cavagnaro P" first="Pablo F" last="Cavagnaro">Pablo F. Cavagnaro</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003245 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003245 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20950470
   |texte=   Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.).
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20950470" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020